Ultra low-parameter denoising: Trainable bilateral filter layers in computed tomography.

Researchers

Journal

Modalities

Models

Abstract

Computed tomography (CT) is widely used as an imaging tool to visualize three-dimensional structures with expressive bone-soft tissue contrast. However, CT resolution can be severely degraded through low-dose acquisitions, highlighting the importance of effective denoising algorithms.Most data-driven denoising techniques are based on deep neural networks and, therefore, contain hundreds of thousands of trainable parameters, making them incomprehensible and prone to prediction failures. Developing understandable and robust denoising algorithms achieving state-of-the-art performance helps to minimize radiation dose while maintaining data integrity.This work presents an open-source CT denoising framework based on the idea of bilateral filtering. We propose a bilateral filter that can be incorporated into any deep learning pipeline and optimized in a purely data-driven way by calculating the gradient flow toward its hyperparameters and its input. Denoising in pure image-to-image pipelines and across different domains such as raw detector data and reconstructed volume, using a differentiable backprojection layer, is demonstrated. In contrast to other models, our bilateral filter layer consists of only four trainable parameters and constrains the applied operation to follow the traditional bilateral filter algorithm by design.Although only using three spatial parameters and one intensity range parameter per filter layer, the proposed denoising pipelines can compete with deep state-of-the-art denoising architectures with several hundred thousand parameters. Competitive denoising performance is achieved on x-ray microscope bone data and the 2016 Low Dose CT Grand Challenge data set. We report structural similarity index measures (SSIM) of 0.7094 and 0.9674 and peak signal-to-noise ratio (PSNR) values of 33.17 and 43.07 on the respective data sets.Due to the extremely low number of trainable parameters with well-defined effect, prediction reliance and data integrity is guaranteed at any time in the proposed pipelines, in contrast to most other deep learning-based denoising architectures. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *