|

The prediction of pCR and chemosensitivity for breast cancer patients using DLG3, RADL and Pathomics signatures based on machine learning and deep learning.

Researchers

Journal

Modalities

Models

Abstract

Limited studies have investigated the predictive value of multiomics signatures (radiomics, deep learning features, pathological features and DLG3) in breast cancer patients who underwent neoadjuvant chemotherapy (NAC). However, no study has explored the relationships among radiomic, pathomic signatures and chemosensitivity. This study aimed to predict pathological complete response (pCR) using multiomics signatures, and to evaluate the predictive utility of radiomic and pathomic signatures for guiding chemotherapy selection.The oncogenic function of DLG3 was explored in breast cancer cells via DLG3 knockdown. Immunohistochemistry (IHC) was used to evaluate the relationship between DLG3 expression and docetaxel/epirubin sensitivity. Machine learning (ML) and deep learning (DL) algorithms were used to develop multiomics signatures. Survival analysis was conducted by K-M curves and log-rank. Multivariate logistic regression analysis was used to develop nomograms.A total of 311 patients with malignant breast tumours who underwent NAC were retrospectively included in this multicentre study. Multiomics (DLG3, RADL and PATHO) signatures could accurately predict pCR (AUC: training: 0.900; testing: 0.814; external validation: 0.792). Its performance is also superior to that of clinical TNM staging and the single RADL signature in different cohorts. Patients in the low DLG3 group more easily achieved pCR, and those in the high RADL Signature_pCR and PATHO_Signature_pCR (OR = 7.93, 95 % CI: 3.49-18, P < 0.001) groups more easily achieved pCR. In the TEC regimen NAC group, patients who achieved pCR had a lower DLG3 score (4.00 ± 2.33 vs. 6.43 ± 3.01, P < 0.05). Patients in the low RADL_Signature_DLG3 and PATHO_Signature_DLG3 groups had lower DLG3 IHC scores (P < 0.05). Patients in the high RADL signature, PATHO signature and DLG3 signature groups had worse DFS and OS.Multiomics signatures (RADL, PATHO and DLG3) demonstrated great potential in predicting the pCR of breast cancer patients who underwent NAC. The RADL and PATHO signatures are associated with DLG3 status and could help doctors or patients choose proper neoadjuvant chemotherapy regimens (TEC regimens). This simple, structured, convenient and inexpensive multiomics model could help clinicians and patients make treatment decisions.Copyright © 2024. Published by Elsevier Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *