|

Suppression of artifact-generating echoes in cine DENSE using deep learning.

Researchers

Journal

Modalities

Models

Abstract

To use deep learning for suppression of the artifact-generating T1 -relaxation echo in cine displacement encoding with stimulated echoes (DENSE) for the purpose of reducing the scan time.
A U-Net was trained to suppress the artifact-generating T1 -relaxation echo using complementary phase-cycled data as the ground truth. A data-augmentation method was developed that generates synthetic DENSE images with arbitrary displacement-encoding frequencies to suppress the T1 -relaxation echo modulated for a range of frequencies. The resulting U-Net (DAS-Net) was compared with k-space zero-filling as an alternative method. Non-phase-cycled DENSE images acquired in shorter breath-holds were processed by DAS-Net and compared with DENSE images acquired with phase cycling for the quantification of myocardial strain.
The DAS-Net method effectively suppressed the T1 -relaxation echo and its artifacts, and achieved root Mean Square(RMS) error = 5.5 ± 0.8 and structural similarity index = 0.85 ± 0.02 for DENSE images acquired with a displacement encoding frequency of 0.10 cycles/mm. The DAS-Net method outperformed zero-filling (root Mean Square error = 5.8 ± 1.5 vs 13.5 ± 1.5, DAS-Net vs zero-filling, P < .01; and structural similarity index = 0.83 ± 0.04 vs 0.66 ± 0.03, DAS-Net vs zero-filling, P < .01). Strain data for non-phase-cycled DENSE images with DAS-Net showed close agreement with strain from phase-cycled DENSE.
The DAS-Net method provides an effective alternative approach for suppression of the artifact-generating T1 -relaxation echo in DENSE MRI, enabling a 42% reduction in scan time compared to DENSE with phase-cycling.
© 2021 International Society for Magnetic Resonance in Medicine.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *