Realize Generative Yet Complete Latent Representation for Incomplete Multi-View Learning.

Researchers

Journal

Modalities

Models

Abstract

In multi-view environment, it would yield missing observations due to the limitation of the observation process. The most current representation learning methods struggle to explore complete information by lacking either cross-generative via simply filling in missing view data, or solidative via inferring a consistent representation among the existing views. To address this problem, we propose a deep generative model to learn a complete generative latent representation, namely Complete Multi-view Variational Auto-Encoders (CMVAE), which models the generation of the multiple views from a complete latent variable represented by a mixture of Gaussian distributions. Thus, the missing view can be fully characterized by the latent variables and is resolved by estimating its posterior distribution. Accordingly, a novel variational lower bound is introduced to integrate view-invariant information into posterior inference to enhance the solidative of the learned latent representation. The intrinsic correlations between views are mined to seek cross-view generality, and information leading to missing views is fused by view weights to reach solidity. Benchmark experimental results in clustering, classification, and cross-view image generation tasks demonstrate the superiority of CMVAE, while time complexity and parameter sensitivity analyses illustrate the efficiency and robustness. Additionally, application to bioinformatics data exemplifies its practical significance.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *