| |

Rapid detection of fetal compromise using input length invariant deep learning on fetal heart rate signals.

Researchers

Journal

Modalities

Models

Abstract

Standard clinical practice to assess fetal well-being during labour utilises monitoring of the fetal heart rate (FHR) using cardiotocography. However, visual evaluation of FHR signals can result in subjective interpretations leading to inter and intra-observer disagreement. Therefore, recent studies have proposed deep-learning-based methods to interpret FHR signals and detect fetal compromise. These methods have typically focused on evaluating fixed-length FHR segments at the conclusion of labour, leaving little time for clinicians to intervene. In this study, we propose a novel FHR evaluation method using an input length invariant deep learning model (FHR-LINet) to progressively evaluate FHR as labour progresses and achieve rapid detection of fetal compromise. Using our FHR-LINet model, we obtained approximately 25% reduction in the time taken to detect fetal compromise compared to the state-of-the-art multimodal convolutional neural network while achieving 27.5%, 45.0%, 56.5% and 65.0% mean true positive rate at 5%, 10%, 15% and 20% false positive rate respectively. A diagnostic system based on our approach could potentially enable earlier intervention for fetal compromise and improve clinical outcomes.© 2024. The Author(s).

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *