|

Prospectively-validated deep learning model for segmenting swallowing and chewing structures in CT.

Researchers

Journal

Modalities

Models

Abstract

ObjectiveDelineating swallowing and chewing structures aids in radiotherapy (RT) treatment planning to limit dysphagia, trismus, and speech dysfunction. We aim to develop an accurate and efficient method to automate this process.ApproachCT scans of 242 head and neck (H&N) cancer patients acquired from 2004-2009 at our institution were used to develop auto-segmentation models for the masseters, medial pterygoids, larynx, and pharyngeal constrictor muscle using DeepLabV3+. A cascaded architecture was used, wherein models were trained sequentially to spatially constrain each structure group based on prior segmentations. Additionally, an ensemble of models, combining contextual information from axial, coronal, and sagittal views was used to improve segmentation accuracy. Prospective evaluation was conducted by measuring the amount of manual editing required in 91 H&N CT scans acquired February-May 2021.Main resultsMedians and inter-quartile ranges of Dice Similarity Coefficients (DSC) computed on the retrospective testing set (N=24) were 0.87 (0.85-0.89) for the masseters, 0.80 (0.79- 0.81) for the medial pterygoids, 0.81 (0.79-0.84) for the larynx, and 0.69 (0.67-0.71) for the constrictor. Auto-segmentations, when compared to inter-observer variability in 10 randomly selected scans, showed better agreement (DSC) with each observer as compared to inter-observer DSC. Prospective analysis showed most manual modifications needed for clinical use were minor, suggesting auto-contouring could increase clinical efficiency. Trained segmentation models are available for research use upon request via https://github.com/cerr/CERR/wiki/Auto-Segmentation-models.SignificanceWe developed deep learning-based auto-segmentation models for swallowing and chewing structures in CT and demonstrated its potential for use in treatment planning to limit complications post-RT. To the best of our knowledge, this is the only prospectively-validated deep learning-based model for segmenting chewing and swallowing structures in CT. Additionally, the segmentation models have been made open-source to facilitate reproducibility and multi-institutional research.© 2021 Institute of Physics and Engineering in Medicine.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *