|

Prospective Clinical Adoption of Artificial Intelligence for Organ Contouring in Head and Neck Radiation Treatment Planning.

Researchers

Journal

Modalities

Models

Abstract

Patients that undergo head and neck (H&N) radiation therapy (RT) require laborious delineation of organs-at-risk (OARs) on computed tomography (CT) scans in a treatment planning system (TPS) to minimize radiation to normal tissue. This task can be completed rapidly and accurately with recently developed artificial intelligence-based semantic segmentation models. The current study aims to deploy and evaluate a strategy for improving clinical practice with this technology.Deep learning models were trained and tested with CT scans and OAR contours from previous H&N RT cases at our clinic. Two medical physicists vetted the models and selected a 2.5D U-Net for further implementation. The model was embedded in a dedicated server at the hospital, programmed to read H&N CT scans staged for import into the TPS, generate auto-contours, and write them into a TPS-compatible format made available alongside the scan. In the pilot implementation, the auto-contouring service was utilized for more than 60 cases, prospectively. The auto-contours were quantitatively evaluated against the treatment-approved contours to determine how much modification was performed by the clinical team.The 2.5D U-Net selected for clinical integration segments 21 OARs in less than 3 minutes per scan. Across all the prospective cases, the mean Dice score and mean 95th percentile Hausdorff distance (mm) between the auto-contour and treatment-approved contour for each of the 21 OARs were as follows, respectively: brainstem (0.93, 1.94), optic chiasm (0.70, 2.96), left cochlea (0.69, 2.37), right cochlea (0.68, 2.44), esophagus (0.88, 2.46), left globe (0.93, 1.50), right globe (0.93, 1.63), glottis (0.91, 2.13), larynx (0.93, 2.76), mandible (0.90, 4.86), left optic nerve (0.78, 1.64), right optic nerve (0.82, 1.65), oral cavity (0.86, 8.46), left parotid gland (0.91, 2.78), right parotid gland (0.91, 2.39), pharynx (0.85, 2.39), spinal cord (0.87, 2.27), left submandibular gland (0.85, 3.46), right submandibular gland (0.83, 3.69), left temporal lobe (0.94, 2.20), and right temporal lobe (0.95, 2.09). The auto-contours for the optic chiasm, optic nerves, cochleas, and submandibular glands differed substantially from the final contours, a finding corroborated by the clinical team; the rest were clinically acceptable with minor or no edits necessary.The proposed strategy provides a sophisticated starting point for treatment planning that has garnered overall favorable feedback from the participating radiation oncologists and dosimetrists. Consequently, the technique is being extended to other treatment sites.Copyright © 2023. Published by Elsevier Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *