| |

Preeclampsia Susceptibility Assessment Based on Deep Learning Modeling and Single Nucleotide Polymorphism Analysis.

Researchers

Journal

Modalities

Models

Abstract

The early diagnosis of preeclampsia, a key outlook in improving pregnancy outcomes, still remains elusive. The present study aimed to examine the interleukin-13 and interleukin-4 pathway potential in the early detection of preeclampsia as well as the relationship between interleukin-13 rs2069740(T/A) and rs34255686(C/A) polymorphisms and preeclampsia risk to present a combined model. This study utilized raw data from the GSE149440 microarray dataset, and an expression matrix was constructed using the RMA method and affy package. The genes related to the interleukin-13 and interleukin-4 pathway were extracted from the GSEA, and their expression levels were applied to design multilayer perceptron and PPI graph convolutional neural network models. Moreover, genotyping for the rs2069740(T/A) and rs34255686(C/A) polymorphisms of the interleukin-13 gene were tested using the amplification refractory mutation system PCR method. The outcomes revealed that the expression levels of interleukin-4 and interleukin-13 pathway genes could significantly differentiate early preeclampsia from normal pregnancy. Moreover, the present study’s data suggested significant differences in the genotype distribution, the allelic frequencies and some of the risk markers of the study, in the position of rs34255686 and rs2069740 polymorphisms between the case and control groups. A combined test of two single nucleotide polymorphisms and an expression-based deep learning model could be designed for future preeclampsia diagnostic purposes.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *