Low Dose CT Image Denoising Using Boosting Attention Fusion GAN with Perceptual Loss.

Researchers

Journal

Modalities

Models

Abstract

Image denoising of Low-dose computed tomography (LDCT) images has continues to receive attention in the research community due to ongoing concerns about high-dose radiation exposure of patients for diagnosis. The use of low radiation CT image, however, could lead to inaccurate diagnosis due to the presence of noise. Deep learning techniques are being integrated into denoising methods to address this problem. In this paper, a General Adversarial Network (GAN) composed of boosting fusion of spatial and channel attention modules is proposed. These modules are embedded in the denoiser to address the limitations of other GAN-based denoising models that tend to only focus on the local processing and neglect the dependencies of creating feature maps with spatial- and channel- wise image characteristics. This study aims to preserve structural details of LDCT images by applying boosting attention modules, prevents edge over-smoothing by integrating perceptual loss via VGG16 pre-trained network, and finally, improves the computational efficiency by taking advantage of deep learning techniques and GPU parallel computation.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *