Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.

Researchers

Journal

Modalities

Models

Abstract

Genomic information is nowadays widely used for precise cancer treatments. Since the individual type of omics data only represents a single view that suffers from data noise and bias, multiple types of omics data are required for accurate cancer prognosis prediction. However, it is challenging to effectively integrate multi-omics data due to the large number of redundant variables but relatively small sample size. With the recent progress in deep learning techniques, Autoencoder was used to integrate multi-omics data for extracting representative features. Nevertheless, the generated model is fragile from data noises. Additionally, previous studies usually focused on individual cancer types without making comprehensive tests on pan-cancer. Here, we employed the denoising Autoencoder to get a robust representation of the multi-omics data, and then used the learned representative features to estimate patients’ risks.
By applying to 15 cancers from The Cancer Genome Atlas (TCGA), our method was shown to improve the C-index values over previous methods by 6.5% on average. Considering the difficulty to obtain multi-omics data in practice, we further used only mRNA data to fit the estimated risks by training XGboost models, and found the models could achieve an average C-index value of 0.627. As a case study, the breast cancer prognosis prediction model was independently tested on three datasets from the Gene Expression Omnibus (GEO), and shown able to significantly separate high-risk patients from low-risk ones (C-index>0.6, p-values<0.05). Based on the risk subgroups divided by our method, we identified nine prognostic markers highly associated with breast cancer, among which seven genes have been proved by literature review.
Our comprehensive tests indicated that we have constructed an accurate and robust framework to integrate multi-omics data for cancer prognosis prediction. Moreover, it is an effective way to discover cancer prognosis-related genes.
Copyright © 2021. Published by Elsevier Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *