Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping.

Researchers

Journal

Modalities

Models

Abstract

This paper proposes a novel self-supervised learning framework that uses model reinforcement, REference-free LAtent map eXtraction with MOdel REinforcement (RELAX-MORE), for accelerated quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll an iterative model-based qMRI reconstruction into a deep learning framework, enabling accelerated MR parameter maps that are highly accurate and robust.Unlike conventional deep learning methods which require large amounts of training data, RELAX-MORE is a subject-specific method that can be trained on single-subject data through self-supervised learning, making it accessible and practically applicable to many qMRI studies. Using quantitative T 1 $$ {\mathrm{T}}_1 $$ mapping as an example, the proposed method was applied to the brain, knee and phantom data.The proposed method generates high-quality MR parameter maps that correct for image artifacts, removes noise, and recovers image features in regions of imperfect image conditions. Compared with other state-of-the-art conventional and deep learning methods, RELAX-MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping.This work demonstrates the feasibility of a new self-supervised learning method for rapid MR parameter mapping, that is readily adaptable to the clinical translation of qMRI.© 2024 International Society for Magnetic Resonance in Medicine.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *