Image-Level Uncertainty in Pseudo-Label Selection for Semi-Supervised Segmentation.

Researchers

Journal

Modalities

Models

Abstract

Advancements in deep learning techniques have proved useful in biomedical image segmentation. However, the large amount of unlabeled data inherent in biomedical imagery, particularly in digital pathology, creates a semi-supervised learning paradigm. Specifically, because of the time consuming nature of producing pixel-wise annotations and the high cost of having a pathologist dedicate time to labeling, there is a large amount of unlabeled data that we wish to utilize in training segmentation algorithms. Pseudo-labeling is one method to leverage the unlabeled data to increase overall model performance. We adapt a method used for image classification pseudo-labeling to select images for segmentation pseudo-labeling and apply it to 3 digital pathology datasets. To select images for pseudo-labeling, we create and explore different thresholds for confidence and uncertainty on an image level basis. Furthermore, we study the relationship between image-level uncertainty and confidence with model performance. We find that the certainty metrics do not consistently correlate with performance intuitively, and abnormal correlations serve as an indicator of a model’s ability to produce pseudo-labels that are useful in training. Clinical relevance – The proposed approach adapts image-level confidence and uncertainty measures for segmentation pseudo-labeling on digital pathology datasets. Increased model performance enables better disease quantification for histopathology.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *