| |

Identifying B-cell epitopes using AlphaFold2 predicted structures and pretrained language model.

Researchers

Journal

Modalities

Models

Abstract

Identifying the B-cell epitopes is an essential step for guiding rational vaccine development and immunotherapies. Since experimental approaches are expensive and time-consuming, many computational methods have been designed to assist B-cell epitope prediction. However, existing sequence-based methods have limited performance since they only use contextual features of the sequential neighbors while neglecting structural information.Based on the recent breakthrough of AlphaFold2 in protein structure prediction, we propose GraphBepi, a novel graph-based model for accurate B-cell epitope prediction. For one protein, the predicted structure from AlphaFold2 is used to construct the protein graph, where the nodes/residues are encoded by ESM-2 learning representations. The graph is input into the edge-enhanced deep graph neural network (EGNN) to capture the spatial information in the predicted 3D structures. In parallel, a bidirectional long short-term memory neural networks (BiLSTM) is employed to capture long-range dependencies in the sequence. The learned low-dimensional representations by EGNN and BiLSTM are then combined into a multilayer perceptron for predicting B-cell epitopes. Through comprehensive tests on the curated epitope dataset, GraphBepi was shown to outperform the state-of-the-art methods by more than 5.5% and 44.0% in terms of AUC and AUPR, respectively. A web server is freely available at http://bio-web1.nscc-gz.cn/app/graphbepi.The datasets, pre-computed features, source codes, and the trained model are available at https://github.com/biomed-AI/GraphBepi.© The Author(s) 2023. Published by Oxford University Press.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *