|

Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy.

Researchers

Journal

Modalities

Models

Abstract

The aim of this work is to generate synthetic computed tomography (sCT) images from multi-sequence magnetic resonance (MR) images using an adversarial network and to assess the feasibility of sCT-based treatment planning for brain radiotherapy. Datasets for 15 patients with glioblastoma were selected and 580 pairs of CT and MR images were used. T1-weighted, T2-weighted and fluid-attenuated inversion recovery MR sequences were combined to create a three-channel image as input data. A conditional generative adversarial network (cGAN) was trained using image patches. The image quality was evaluated using voxel-wise mean absolute errors (MAEs) of the CT number. For the dosimetric evaluation, 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans were generated using the original CT set and recalculated using the sCT images. The isocenter dose and dose-volume parameters were compared for 3D-CRT and VMAT plans, respectively. The equivalent path length was also compared. The mean MAEs for the whole body, soft tissue and bone region were 108.1 ± 24.0, 38.9 ± 10.7 and 366.2 ± 62.0 hounsfield unit, respectively. The dosimetric evaluation revealed no significant difference in the isocenter dose for 3D-CRT plans. The differences in the dose received by 2% of the volume (D2%), D50% and D98% relative to the prescribed dose were <1.0%. The overall equivalent path length was shorter than that for real CT by 0.6 ± 1.9 mm. A treatment planning study using generated sCT detected only small, clinically negligible differences. These findings demonstrated the feasibility of generating sCT images for MR-only radiotherapy from multi-sequence MR images using cGAN.
© The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *