|

Fast spot-scanning proton dose calculation method with uncertainty quantification using a three-dimensional convolutional neural network.

Researchers

Journal

Modalities

Models

Abstract

This study proposes a near-real-time spot-scanning proton dose calculation method with probabilistic uncertainty estimation using a three-dimensional convolutional neural network (3D-CNN).
CT images and clinical target volume contours of 215 head and neck cancer patients were collected from a public database. 1,484 and 488 plans were extracted for training and testing the 3D-CNN model, respectively. Spot beam data and single-field uniform dose (SFUD) labels were calculated for each plan using an open-source dose calculation toolkit. Variable spot data were converted into a fixed-size volume hereby called a “peak map” (PM). 300 epochs of end-to-end training was implemented using sets of stopping power ratio and PM as input. Moreover, transfer learning techniques were used to adjust the trained model to SFUD doses calculated with different beam parameters and calculation algorithm using only 7.95% of training data used for the base model. Finally, accuracy of the 3D-CNN-calculated doses and model uncertainty was reviewed with several evaluation metrics.
The 3D-CNN model calculates 3D proton dose distributions accurately with a mean absolute error of 0.778 cGyE. The predicted uncertainty is correlated with dose errors at high contrast edges. Averaged Sørensen-Dice similarity coefficients between binarized outputs and ground truths are mostly above 80%. Once the 3D-CNN model was well-trained, it can be efficiently fine-tuned for different proton doses by transfer learning techniques. Inference time for calculating one dose distribution is around 0.8 seconds for a plan using 1,500 spot beams with a consumer grade GPU.
A novel spot-scanning proton dose calculation method using 3D-CNN was developed. The 3D-CNN model is able to calculate 3D doses and uncertainty with any SFUD spot data and beam irradiation angles. Our proposed method should be readily extendable to other setups and plans and be useful for dose verification, image-guided proton therapy, or other applications.
© 2020 Institute of Physics and Engineering in Medicine.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *