Explicit and automatic ejection fraction assessment on 2D cardiac ultrasound with a deep learning-based approach.

Researchers

Journal

Modalities

Models

Abstract

Ejection fraction (EF) is a key parameter for assessing cardiovascular functions in cardiac ultrasound, but its manual assessment is time-consuming and subject to high inter and intra-observer variability. Deep learning-based methods have the potential to perform accurate fully automatic EF predictions but suffer from a lack of explainability and interpretability. This study proposes a fully automatic method to reliably and explicitly evaluate the biplane left ventricular EF on 2D echocardiography following the recommended modified Simpson’s rule.A deep learning model was trained on apical 4 and 2-chamber echocardiography to segment the left ventricle and locate the mitral valve. Predicted segmentations are then validated with a statistical shape model, which detects potential failures that could impact the EF evaluation. Finally, the end-diastolic and end-systolic frames are identified based on the remaining LV segmentations’ areas and EF is estimated on all available cardiac cycles.Our approach was trained on a dataset of 783 patients. Its performances were evaluated on an internal and external dataset of respectively 200 and 450 patients. On the internal dataset, EF assessment achieved a mean absolute error of 6.10% and a bias of 1.56 ± 7.58% using multiple cardiac cycles. The approach evaluated EF with a mean absolute error of 5.39% and a bias of -0.74 ± 7.12% on the external dataset.Following the recommended guidelines, we proposed an end-to-end fully automatic approach that achieves state-of-the-art performance in biplane EF evaluation while giving explicit details to clinicians.Copyright © 2022. Published by Elsevier Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *