|

EpICC: A Bayesian neural network model with uncertainty correction for a more accurate classification of cancer.

Researchers

Journal

Modalities

Models

Abstract

Accurate classification of cancers into their types and subtypes holds the key for choosing the right treatment strategy and can greatly impact patient well-being. However, existence of large-scale variations in the molecular processes driving even a single type of cancer can make accurate classification a challenging problem. Therefore, improved and robust methods for classification are absolutely critical. Although deep learning-based methods for cancer classification have been proposed earlier, they all provide point estimates for predictions without any measure of confidence and thus, can fall short in real-world applications where key decisions are to be made based on the predictions of the classifier. Here we report a Bayesian neural network-based model for classification of cancer types as well as sub-types from transcriptomic data. This model reported a measure of confidence with each prediction through analysis of epistemic uncertainty. We incorporated an uncertainty correction step with the Bayesian network-based model to greatly enhance prediction accuracy of cancer types (> 97% accuracy) and sub-types (> 80%). Our work suggests that reporting uncertainty measure with each classification can enable more accurate and informed decision-making that can be highly valuable in clinical settings.© 2022. The Author(s).

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *