| |

Enhancing Personalized Gene Expression Prediction From DNA Sequences Using Genomic Foundation Models.

Researchers

Journal

Modalities

Models

Abstract

Artificial intelligence/deep learning (AI/DL) models that predict molecular phenotypes like gene expression directly from DNA sequences have recently emerged. While these models have proven effective at capturing the variation across genes, their ability to explain inter-individual differences has been limited. We hypothesize that the performance gap can be narrowed through the use of pre-trained embeddings from the Nucleotide Transformer, a large foundation model trained on 3,000+ genomes. We train a transformer model using the pre-trained embeddings and compare its predictive performance to Enformer, the current state-of-the-art model, using genotype and expression data from 290 individuals. Our model significantly outperforms Enformer in terms of correlation across individuals and narrows the performance gap with an elastic net regression approach using just the genetic variants as predictors. Although simple regression models have their advantages in personalized prediction tasks, DL approaches based on foundation models pre-trained on diverse genomes have unique strengths in flexibility and interpretability. With further methodological and computational improvements with more training data, these models may someday predict molecular phenotypes from DNA sequences with accuracy surpassing that of regression-based approaches. Our work demonstrates the potential for large pre-trained AI/DL models to advance functional genomics.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *