|

Effect of fully automatic classification model from different tube voltage images on bone density screening: A self-controlled study.

Researchers

Journal

Modalities

Models

Abstract

To develop two bone status prediction models combining deep learning and radiomics based on standard-dose chest computed tomography (SDCT) and low-dose chest computed tomography (LDCT), and to evaluate the effect of tube voltage on reproducibility of radiomics features and predictive efficacy of these models.A total of 1508 patients were enrolled in this retrospective study. LDCT was conducted using 80 kVp, tube current ranging from 100 to 475 mA. On the other hand, SDCT was performed using 120 kVp, tube current ranging from 100 to 520 mA. We developed an automatic thoracic vertebral cancellous bone (TVCB) segmentation model. Subsequently, 1184 features were extracted and two classifiers were developed based on LDCT and SDCT images. Based on the diagnostic results of quantitative computed tomography examination, the first-level classifier was initially developed to distinguish normal or abnormal BMD (including osteoporosis and osteopenia), while the second-level classifier was employed to identify osteoporosis or osteopenia. The Dice coefficient was used to evaluate the performance of the automated segmentation model. The Concordance Correlation Coefficients (CCC) of radiomics features were calculated between LDCT and SDCT, and the performance of these models was evaluated.Our automated segmentation model achieved a Dice coefficient of 0.98 ± 0.01 and 0.97 ± 0.02 in LDCT and SDCT, respectively. Alterations in tube voltage decreased the reproducibility of the extracted radiomic features, with 85.05 % of the radiomic features exhibiting low reproducibility (CCC < 0.75). The area under the curve (AUC) using LDCT-based and SDCT-based models was 0.97 ± 0.01 and 0.94 ± 0.02, respectively. Nonetheless, cross-validation with independent test sets of different tube voltage scans suggests that variations in tube voltage can impair the diagnostic efficacy of the model. Consequently, radiomics models are not universally applicable to images of varying tube voltages. In clinical settings, ensuring consistency between the tube voltage of the image used for model development and that of the acquired patient image is critical.Automatic bone status prediction models, utilizing either LDCT or SDCT images, enable accurate assessment of bone status. Tube voltage impacts reproducibility of features and predictive efficacy of models. It is necessary to account for tube voltage variation during the image acquisition.Copyright © 2024 Elsevier B.V. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *