|

Domain knowledge driven 3D dose prediction using moment-based loss function.

Researchers

Journal

Modalities

Models

Abstract

To propose a novel moment-based loss function for predicting 3D dose distribution for the challenging conventional lung IMRT plans. The moment-based loss function is convex and differentiable and can easily incorporate clinical dose volume histogram (DVH) domain knowledge in any deep learning framework without computational overhead.We used a large dataset of 360 (240 for training, 50 for validation and 70 for testing) conventional lung patients with 2Gy × 30 fractions to train the deep learning (DL) model using clinically treated plans at our institution. We trained a UNet like CNN architecture using computed tomography (CT), planning target volume (PTV) and organ-at-risk contours (OAR) as input to infer corresponding voxel-wise 3D dose distribution. We evaluated three different loss functions: (1) The popular Mean Absolute Error (MAE) Loss, (2) the recently developed MAE + DVH Loss, and (3) the proposed MAE + Moments Loss. The quality of the predictions was compared using different DVH metrics as well as dose-score and DVH-score, recently introduced by the AAPM knowledge-based planning grand challenge Main results: Model with (MAE + Moment) loss function outperformed the model with MAE loss by significantly improving the DVH-score (11%, p<0.01) while having similar computational cost. It also outperformed the model trained with (MAE+DVH) by significantly improving the computational cost (48%) and the DVH-score (8%, p<0.01).© 2022 Institute of Physics and Engineering in Medicine.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *