DNN-FZA camera: a deep learning approach toward broadband FZA lensless imaging.

Researchers

Journal

Modalities

Models

Abstract

In mask-based lensless imaging, iterative reconstruction methods based on the geometric optics model produce artifacts and are computationally expensive. We present a prototype of a lensless camera that uses a deep neural network (DNN) to realize rapid reconstruction for Fresnel zone aperture (FZA) imaging. A deep back-projection network (DBPN) is connected behind a U-Net providing an error feedback mechanism, which realizes the self-correction of features to recover the image detail. A diffraction model generates the training data under conditions of broadband incoherent imaging. In the reconstructed results, blur caused by diffraction is shown to have been ameliorated, while the computing time is 2 orders of magnitude faster than the traditional iterative image reconstruction algorithms. This strategy could drastically reduce the design and assembly costs of cameras, paving the way for integration of portable sensors and systems.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *