|

DeepLUCIA: predicting tissue-specific chromatin loops using Deep Learning-based Universal Chromatin Interaction Annotator.

Researchers

Journal

Modalities

Models

Abstract

The importance of chromatin loops in gene regulation is broadly accepted. There are mainly two approaches to predict chromatin loops: transcription factor (TF) binding-dependent approach and genomic variation-based approach. However, neither of these approaches provides an adequate understanding of gene regulation in human tissues. To address this issue, we developed a deep learning-based chromatin loop prediction model called DeepLUCIA (Deep Learning-based Universal Chromatin Interaction Annotator).Although DeepLUCIA does not use TF binding profile data which previous TF binding-dependent methods critically rely on, its prediction accuracies are comparable to those of the previous TF binding-dependent methods. More importantly, DeepLUCIA enables the tissue-specific chromatin loop predictions from tissue-specific epigenomes that cannot be handled by genomic variation-based approach. We demonstrated the utility of the DeepLUCIA by predicting several novel target genes of SNPs identified in genome-wide association studies targeting Brugada syndrome, COVID-19 severity, and age-related macular degeneration.Supplementary data are available at Bioinformatics online.© The Author(s) (2022). Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *