| |

DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response.

Researchers

Journal

Modalities

Models

Abstract

The coronavirus disease 2019 (COVID-19) remains a global public health emergency. Although people, especially those with underlying health conditions, could benefit from several approved COVID-19 therapeutics, the development of effective antiviral COVID-19 drugs is still a very urgent problem. Accurate and robust drug response prediction to a new chemical compound is critical for discovering safe and effective COVID-19 therapeutics.In this study, we propose DeepCoVDR, a novel COVID-19 drug response prediction method based on deep transfer learning with graph transformer and cross-attention. First, we adopt a graph transformer and feed-forward neural network to mine the drug and cell line information. Then, we use a cross-attention module that calculates the interaction between the drug and cell line. After that, DeepCoVDR combines drug and cell line representation and their interaction features to predict drug response. To solve the problem of SARS-CoV-2 data scarcity, we apply transfer learning and use the SARS-CoV-2 dataset to fine-tune the model pretrained on the cancer dataset. The experiments of regression and classification show that DeepCoVDR outperforms baseline methods. We also evaluate DeepCoVDR on the cancer dataset, and the results indicate that our approach has high performance compared with other state-of-the-art methods. Moreover, we use DeepCoVDR to predict COVID-19 drugs from FDA-approved drugs and demonstrate the effectiveness of DeepCoVDR in identifying novel COVID-19 drugs.https://github.com/Hhhzj-7/DeepCoVDR.© The Author(s) 2023. Published by Oxford University Press.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *