|

Deep learning model to predict exercise stress test results: Optimizing the diagnostic test selection strategy and reduce wastage in suspected coronary artery disease patients.

Researchers

Journal

Modalities

Models

Abstract

Cardiac exercise stress testing (EST) offers a non-invasive way in the management of patients with suspected coronary artery disease (CAD). However, up to 30% EST results are either inconclusive or non-diagnostic, which results in significant resource wastage. Our aim was to build machine learning (ML) based models, using patients demographic (age, sex) and pre-test clinical information (reason for performing test, medications, blood pressure, heart rate, and resting electrocardiogram), capable of predicting EST results beforehand including those with inconclusive or non-diagnostic results.A total of 30,710 patients (mean age 54.0 years, 69% male) were included in the study with 25% randomly sampled in the test set, and the remaining samples were split into a train and validation set with a ratio of 9:1. We constructed different ML models from pre-test variables and compared their discriminant power using the area under the receiver operating characteristic curve (AUC).A network of Oblivious Decision Trees provided the best discriminant power (AUC=0.83, sensitivity=69%, specificity=0.78%) for predicting inconclusive EST results. A total of 2010 inconclusive ESTs were correctly identified in the testing set.Our ML model, developed using demographic and pre-test clinical information, can accurately predict EST results and could be used to identify patients with inconclusive or non-diagnostic results beforehand. Our system could thus be used as a personalised decision support tool by clinicians for optimizing the diagnostic test selection strategy for CAD patients and to reduce healthcare expenditure by reducing nondiagnostic or inconclusive ESTs.Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *