|

Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy.

Researchers

Journal

Modalities

Models

Abstract

Magnetic resonance (MR) only radiation therapy for prostate treatment provides superior contrast for defining targets and organs-at-risk (OARs). This study aims to develop a deep learning model to leverage this advantage to automate the contouring process.
Six structures (bladder, rectum, urethra, penile bulb, rectal spacer, prostate and seminal vesicles) were contoured and reviewed by a radiation oncologist on axial T2-weighted MR image sets from 50 patients, which constituted expert delineations. The data was split into a 40/10 training and validation set to train a two-dimensional fully convolutional neural network, DeepLabV3+, using transfer learning. The T2-weighted image sets were pre-processed to 2D false color images to leverage pre-trained (from natural images) convolutional layers’ weights. Independent testing was performed on an additional 50 patient’s MR scans. Performance comparison was done against a U-Net deep learning method. Algorithms were evaluated using volumetric Dice similarity coefficient (VDSC) and surface Dice similarity coefficient (SDSC).
When comparing VDSC, DeepLabV3+ significantly outperformed U-Net for all structures except urethra (P < 0.001). Average VDSC was 0.93 ± 0.04 (bladder), 0.83 ± 0.06 (prostate and seminal vesicles [CTV]), 0.74 ± 0.13 (penile bulb), 0.82 ± 0.05 (rectum), 0.69 ± 0.10 (urethra), and 0.81 ± 0.1 (rectal spacer). Average SDSC was 0.92 ± 0.1 (bladder), 0.85 ± 0.11 (prostate and seminal vesicles [CTV]), 0.80 ± 0.22 (penile bulb), 0.87 ± 0.07 (rectum), 0.85 ± 0.25 (urethra), and 0.83 ± 0.26 (rectal spacer).
A deep learning-based model produced contours that show promise to streamline an MR-only planning workflow in treating prostate cancer.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *