| |

CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network.

Researchers

Journal

Modalities

Models

Abstract

Using the CRISPR-Cas9 system to perform base substitutions at the target site is a typical technique for genome editing with the potential for applications in gene therapy and agricultural productivity. When the CRISPR-Cas9 system uses guide RNA to direct the Cas9 endonuclease to the target site, it may misdirect it to a potential off-target site, resulting in an unintended genome editing. Although several computational methods have been proposed to predict off-target effects, there is still room for improvement in the off-target effect prediction capability. In this paper, we present an effective approach called CRISPR-M with a new encoding scheme and a novel multi-view deep learning model to predict the sgRNA off-target effects for target sites containing indels and mismatches. CRISPR-M takes advantage of convolutional neural networks and bidirectional long short-term memory recurrent neural networks to construct a three-branch network towards multi-views. Compared with existing methods, CRISPR-M demonstrates significant performance advantages running on real-world datasets. Furthermore, experimental analysis of CRISPR-M under multiple metrics reveals its capability to extract features and validates its superiority on sgRNA off-target effect predictions.Copyright: © 2024 Sun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *