Clinical applications of graph neural networks in computational histopathology: A review.

Researchers

Journal

Modalities

Models

Abstract

Pathological examination is the optimal approach for diagnosing cancer, and with the advancement of digital imaging technologies, it has spurred the emergence of computational histopathology. The objective of computational histopathology is to assist in clinical tasks through image processing and analysis techniques. In the early stages, the technique involved analyzing histopathology images by extracting mathematical features, but the performance of these models was unsatisfactory. With the development of artificial intelligence (AI) technologies, traditional machine learning methods were applied in this field. Although the performance of the models improved, there were issues such as poor model generalization and tedious manual feature extraction. Subsequently, the introduction of deep learning techniques effectively addressed these problems. However, models based on traditional convolutional architectures could not adequately capture the contextual information and deep biological features in histopathology images. Due to the special structure of graphs, they are highly suitable for feature extraction in tissue histopathology images and have achieved promising performance in numerous studies. In this article, we review existing graph-based methods in computational histopathology and propose a novel and more comprehensive graph construction approach. Additionally, we categorize the methods and techniques in computational histopathology according to different learning paradigms. We summarize the common clinical applications of graph-based methods in computational histopathology. Furthermore, we discuss the core concepts in this field and highlight the current challenges and future research directions.Copyright © 2023. Published by Elsevier Ltd.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *