|

A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models.

Researchers

Journal

Modalities

Models

Abstract

As seen in the COVID-19 pandemic, one of the most important measures is physical distance in viruses transmitted from person to person. According to the World Health Organization (WHO), it is mandatory to have a limited number of people in indoor spaces. Depending on the size of the indoors, the number of persons that can fit in that area varies. Then, the size of the indoor area should be measured and the maximum number of people should be calculated accordingly. Computers can be used to ensure the correct application of the capacity rule in indoors monitored by cameras. In this study, a method is proposed to measure the size of a prespecified region in the video and count the people there in real time. According to this method: (1) predetermining the borders of a region on the video, (2) identification and counting of people in this specified region, (3) it is aimed to estimate the size of the specified area and to find the maximum number of people it can take. For this purpose, the You Only Look Once (YOLO) object detection model was used. In addition, Microsoft COCO dataset pre-trained weights were used to identify and label persons. YOLO models were tested separately in the proposed method and their performances were analyzed. Mean average precision (mAP), frame per second (fps), and accuracy rate metrics were found for the detection of persons in the specified region. While the YOLO v3 model achieved the highest value in accuracy rate and mAP (both 0.50 and 0.75) metrics, the YOLO v5s model achieved the highest fps rate among non-Tiny models.© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *