A hybrid cell image segmentation method based on the multilevel improvement of data.

Researchers

Journal

Modalities

Models

Abstract

Over the years, several methods have been developed for the segmentation of cell images. Most of the related techniques operate directly on the raw data (noisy cell samples) of the medical image which leads to adverse effects on the structure of leucocytes because the medical images are affected by multiple distortions (varying illumination, deficient background light intensity, and non-uniform staining). To overcome these problems, we came up with an improved solution that performs the qualitative enhancement of cell images for the smooth extraction of cell-nucleus. Although various segmentation methods have adopted an image improvement operation in practice. These methods also amplify the magnitude of image noise which leads to over-sampling and under-sampling of data points. This mis-labelling of data points is minimized by the developed approach which adopts a collaborative fusion strategy (CNN and Nuclear-norm approach) for the qualitative improvement of cell images. The enhanced cell samples were forwarded to the U-net (deep learning model) model for the semantic segmentation of cell images. The performance evaluation of the model was performed on three biomedical cell imaging datasets, which include the ALL-IDB (99.89% accuracy, 99.51% recall, and 99.01% precision), CellaVision (99.68% accuracy, 98.75% precision, and 97.94% specificity) and JTSC (98.45% accuracy, 97.42% precision, and 97.21% specificity) dataset. The results were compared with the state-of-art methods in which the adopted hybrid approach has overpowered the related techniques in the quantitative and qualitative domains.Copyright © 2023 Elsevier Ltd. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *