|

A Deep Dense Inception Network for Protein Beta-Turn Prediction.

Researchers

Journal

Modalities

Models

Abstract

Beta-turn prediction is useful in protein function studies and experimental design. Although recent approaches using machine-learning techniques such as support vector machine (SVM), neural networks, and K nearest neighbor have achieved good results for beta-turn prediction, there is still significant room for improvement. As previous predictors utilized features in a sliding window of 4-20 residues to capture interactions among sequentially neighboring residues, such feature engineering may result in incomplete or biased features, and neglect interactions among long-range residues. Deep neural networks provide a new opportunity to address these issues. Here, we proposed a deep dense inception network (DeepDIN) for beta-turn prediction, which takes advantages of the state-of-the-art deep neural network design of dense network and inception network. A test on a recent BT6376 benchmark shows that the DeepDIN outperformed the previous best BetaTPred3 significantly in both the overall prediction accuracy and the nine-type beta-turn classification. A tool, called MUFold-BetaTurn, was developed, which is the first beta-turn prediction tool utilizing deep neural networks. The tool can be downloaded at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldBetaTurn/download.html. This article is protected by copyright. All rights reserved.
© 2019 Wiley Periodicals, Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *