|

Super-resolution deep learning image reconstruction: image quality and myocardial homogeneity in coronary computed tomography angiography.

Researchers

Journal

Modalities

Models

Abstract

The recently introduced super-resolution (SR) deep learning image reconstruction (DLR) is potentially effective in reducing noise level and enhancing the spatial resolution. We aimed to investigate whether SR-DLR has advantages in the overall image quality and intensity homogeneity on coronary computed tomography (CT) angiography with four different approaches: filtered-back projection (FBP), hybrid iterative reconstruction (IR), DLR, and SR-DLR.Sixty-three patients (mean age, 61 ± 11 years; range, 18-81 years; 40 men) who had undergone coronary CT angiography between June and October 2022 were retrospectively included. Image noise, signal to noise ratio, and contrast to noise ratio were quantified in both proximal and distal segments of the major coronary arteries. The left ventricle myocardium contrast homogeneity was analyzed. Two independent reviewers scored overall image quality, image noise, image sharpness, and myocardial homogeneity.Image noise in Hounsfield units (HU) was significantly lower (P < 0.001) for the SR-DLR (11.2 ± 2.0 HU) compared to those associated with other image reconstruction methods including FBP (30.5 ± 10.5 HU), hybrid IR (20.0 ± 5.4 HU), and DLR (14.2 ± 2.5 HU) in both proximal and distal segments. SR-DLR significantly improved signal to noise ratio and contrast to noise ratio in both the proximal and distal segments of the major coronary arteries. No significant difference was observed in the myocardial CT attenuation with SR-DLR among different segments of the left ventricle myocardium (P = 0.345). Conversely, FBP and hybrid IR resulted in inhomogeneous myocardial CT attenuation (P < 0.001). Two reviewers graded subjective image quality with SR-DLR higher than other image reconstruction techniques (P < 0.001).SR-DLR improved image quality, demonstrated clearer delineation of distal segments of coronary arteries, and was seemingly accurate for quantifying CT attenuation in the myocardium.© 2024. The Author(s).

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *