| |

Volumetric Analysis of Acute Uncomplicated Type B Aortic Dissection Using an Automated Deep Learning Aortic Zone Segmentation Model.

Researchers

Journal

Modalities

Models

Abstract

Machine learning techniques have shown excellent performance in 3D medical image analysis, but have not been applied to acute uncomplicated type B aortic dissection (auTBAD) utilizing SVS/STS-defined aortic zones. The purpose of this study was to establish a trained, automatic machine learning aortic zone segmentation model to facilitate performance of an aortic zone volumetric comparison between auTBAD patients based on rate of aortic growth.Patients with auTBAD and serial imaging were identified. For each patient, imaging characteristics from two CT scans were analyzed: (1) the baseline CTA at index admission, and (2) either the most recent surveillance CTA, or the most recent CTA prior to an aortic intervention. Patients were stratified into two comparative groups based on aortic growth: rapid growth (diameter increase ≥5mm/year) and no/slow growth (diameter increase <5mm/year). Deidentified images were imported into an open-source software package for medical image analysis and images were annotated based on SVS/STS criteria for aortic zones. Our model was trained using 4-fold cross-validation. The segmentation output was used to calculate aortic zone volumes from each imaging study.Of 59 patients identified for inclusion, rapid growth was observed in 33 (56%) patients and no/slow growth was observed in 26 (44%) patients. There were no differences in baseline demographics, comorbidities, admission mean arterial pressure, number of discharge antihypertensives, or high-risk imaging characteristics between groups (p>0.05 for all). Median duration between baseline and interval CT was 1.07 years (IQR 0.38-2.57). Post-discharge aortic intervention was performed in 13 (22%) of patients at a mean of 1.5±1.2 years, with no difference between groups (p>0.05). Among all patients, the largest relative percent increases in zone volumes over time were found in zone 4 (13.9% IQR -6.82-35.1) and zone 5 (13.4% IQR -7.78-37.9). There were no differences in baseline zone volumes between groups (p>0.05 for all). Average Dice coefficient, a performance measure of the model output, was 0.73. Performance was best in zone 5 (0.84) and zone 9 (0.91).We describe an automatic deep learning segmentation model incorporating SVS-defined aortic zones. The open-source, trained model demonstrates concordance to the manually segmented aortas with the strongest performance in zones 5 and 9, providing a framework for further clinical applications. In our limited sample, there were no differences in baseline aortic zone volumes between rapid growth and no/slow growth patients.Copyright © 2024. Published by Elsevier Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *