Utilizing Deep Learning for Defect Inspection in Hand Tool Assembly.

Researchers

Journal

Modalities

Models

Abstract

The integrity of product assembly in the precision assembly industry significantly influences the quality of the final products. During the assembly process, products may acquire assembly defects due to personnel oversight. A severe assembly defect could impair the product’s normal function and potentially cause loss of life or property for the user. For workpiece defect inspection, there is limited discussion on the simultaneous detection of the primary kinds of assembly anomaly (missing parts, misplaced parts, foreign objects, and extra parts). However, these assembly anomalies account for most customer complaints in the traditional hand tool industry. This is because no equipment can comprehensively inspect major assembly defects, and inspections rely solely on professionals using simple tools and their own experience. Thus, this study proposes an automated visual inspection system to achieve defect inspection in hand tool assembly. This study samples the work-in-process from three assembly stations in the ratchet wrench assembly process; an investigation of 28 common assembly defect types is presented, covering the 4 kinds of assembly anomaly in the assembly operation; also, this study captures sample images of various assembly defects for the experiments. First, the captured images are filtered to eliminate surface reflection noise from the workpiece; then, a circular mask is given at the assembly position to extract the ROI area; next, the filtered ROI images are used to create a defect-type label set using manual annotation; after this, the R-CNN series network models are applied to object feature extraction and classification; finally, they are compared with other object detection models to identify which inspection model has the better performance. The experimental results show that, if each station uses the best model for defect inspection, it can effectively detect and classify defects. The average defect detection rate (1-β) of each station is 92.64%, the average misjudgment rate (α) is 6.68%, and the average correct classification rate (CR) is 88.03%.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *