Using Deep Learning to Automate Eosinophil Counting in Pediatric Ulcerative Colitis Histopathological Images.
Researchers
Journal
Modalities
Models
Abstract
Accurate identification of inflammatory cells from mucosal histopathology images is important in diagnosing ulcerative colitis. The identification of eosinophils in the colonic mucosa has been associated with disease course. Cell counting is not only time-consuming but can also be subjective to human biases. In this study we developed an automatic eosinophilic cell counting tool from mucosal histopathology images, using deep learning.Four pediatric IBD pathologists from two North American pediatric hospitals annotated 530 crops from 143 standard-of-care hematoxylin and eosin (H & E) rectal mucosal biopsies. A 305/75 split was used for training/validation to develop and optimize a U-Net based deep learning model, and 150 crops were used as a test set. The U-Net model was then compared to SAU-Net, a state-of-the-art U-Net variant. We undertook post-processing steps, namely, (1) the pixel-level probability threshold, (2) the minimum number of clustered pixels to designate a cell, and (3) the connectivity. Experiments were run to optimize model parameters using AUROC and cross-entropy loss as the performance metrics.The F1-score was 0.86 (95%CI:0.79-0.91) (Precision: 0.77 (95%CI:0.70-0.83), Recall: 0.96 (95%CI:0.93-0.99)) to identify eosinophils as compared to an F1-score of 0.2 (95%CI:0.13-0.26) for SAU-Net (Precision: 0.38 (95%CI:0.31-0.46), Recall: 0.13 (95%CI:0.08-0.19)). The inter-rater reliability was 0.96 (95%CI:0.93-0.97). The correlation between two pathologists and the algorithm was 0.89 (95%CI:0.82-0.94) and 0.88 (95%CI:0.80-0.94) respectively.Our results indicate that deep learning-based automated eosinophilic cell counting can obtain a robust level of accuracy with a high degree of concordance with manual expert annotations.