|

Uncertain prediction of deformable image registration on lung CT using multi-category features and supervised learning.

Researchers

Journal

Modalities

Models

Abstract

The assessment of deformable registration uncertainty is an important task for the safety and reliability of registration methods in clinical applications. However, it is typically done by a manual and time-consuming procedure. We propose a novel automatic method to predict registration uncertainty based on multi-category features and supervised learning. Three types of features, including deformation field statistical features, deformation field physiologically realistic features, and image similarity features, are introduced and calculated to train the random forest regressor for local registration uncertain prediction. Deformation field statistical features represent the numerical stability of registration optimization, which are correlated to the uncertainty of deformation fields; deformation field physiologically realistic features represent the biomechanical properties of organ motions, which mathematically reflect the physiological reality of deformation; image similarity features reflect the similarity between the warped image and fixed image. The multi-category features comprehensively reflect the registration uncertainty. The strategy of spatial adaptive random perturbations is also introduced to accurately simulate spatial distribution of registration uncertainty, which makes deformation field statistical features more discriminative to the uncertainty of deformation fields. Experiments were conducted on three publicly available thoracic CT image datasets. Seventeen randomly selected image pairs are used to train the random forest model, and 9 image pairs are used to evaluate the prediction model. The quantitative experiments on lung CT images show that the proposed method outperforms the baseline method for uncertain prediction of classical iterative optimization-based registration and deep learning-based registration with different registration qualities. The proposed method achieves good performance for registration uncertain prediction, which has great potential in improving the accuracy of registration uncertain prediction.© 2024. International Federation for Medical and Biological Engineering.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *