Towards Robust, Adaptive and Reliable Upper-limb Motion Estimation Using Machine Learning and Deep Learning–A Survey in Myoelectric Control.

Researchers

Journal

Modalities

Models

Abstract

To develop multi-functional human-machine interfaces that can help disabled people reconstruct lost functions of upper-limbs, machine learning (ML) and deep learning (DL) techniques have been widely implemented to decode human movement intentions from surface electromyography (sEMG) signals. However, due to the high complexity of upper-limb movements and the inherent non-stable characteristics of sEMG, the usability of ML/DL based control schemes is still greatly limited in practical scenarios. To this end, tremendous efforts have been made to improve model robustness, adaptation, and reliability. In this article, we provide a systematic review on recent achievements, mainly from three categories: multi-modal sensing fusion to gain additional information of the user, transfer learning (TL) methods to eliminate domain shift impacts on estimation models, and post-processing approaches to obtain more reliable outcomes. Special attention is given to fusion strategies, deep TL frameworks, and confidence estimation. \textcolor{red}{Research challenges and emerging opportunities, with respect to hardware development, public resources, and decoding strategies, are also analysed to provide perspectives for future developments.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *