| |

Time-Resolved Laser-Induced Breakdown Spectroscopy for Accurate Qualitative and Quantitative Analysis of Brown Rice Flour Adulteration.

Researchers

Journal

Modalities

Models

Abstract

To solve the adulteration problem of brown rice flour in the commodity market, a novel, accurate, and stable detection method based on time-resolved laser-induced breakdown spectroscopy (TR-LIBS) is proposed. Qualitative and quantitative analysis was used to detect five adulterants and seven different adulterant ratios in brown rice flour. Being able to excavate more information from plasma by obtaining time-resolved spectra, TR-LIBS has a stronger performance, which has been further verified by experiments. For the qualitative analysis of adulterants, the traditional machine learning models based on TR-LIBS, linear discriminant analysis (LDA), naïve Bayes (NB) and support vector machine (SVM) have significantly better classification accuracy than those based on traditional LIBS, increasing by 3-11%. The deep learning classification model based on TR-LIBS also achieved the same results, with an accuracy increase of more than 8%. For the quantitative analysis of the adulteration ratio, compared with traditional LIBS, the quantitative model based on TR-LIBS reduces the limit of detection (LOD) of five adulterants from about 8-51% to 4-19%, which effectively improves the quantitative detection performance. Moreover, t-SNE visualization proved that there were more obvious boundaries between different types of samples based on TR-LIBS. These results demonstrate the great prospect of TR-LIBS in the identification of brown rice flour adulteration.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *