| |

The analysis of the internet of things database query and optimization using deep learning network model.

Researchers

Journal

Modalities

Models

Abstract

To explore the application effect of the deep learning (DL) network model in the Internet of Things (IoT) database query and optimization. This study first analyzes the architecture of IoT database queries, then explores the DL network model, and finally optimizes the DL network model through optimization strategies. The advantages of the optimized model in this study are verified through experiments. Experimental results show that the optimized model has higher efficiency than other models in the model training and parameter optimization stages. Especially when the data volume is 2000, the model training time and parameter optimization time of the optimized model are remarkably lower than that of the traditional model. In terms of resource consumption, the Central Processing Unit and Graphics Processing Unit usage and memory usage of all models have increased as the data volume rises. However, the optimized model exhibits better performance on energy consumption. In throughput analysis, the optimized model can maintain high transaction numbers and data volumes per second when handling large data requests, especially at 4000 data volumes, and its peak time processing capacity exceeds that of other models. Regarding latency, although the latency of all models increases with data volume, the optimized model performs better in database query response time and data processing latency. The results of this study not only reveal the optimized model’s superior performance in processing IoT database queries and their optimization but also provide a valuable reference for IoT data processing and DL model optimization. These findings help to promote the application of DL technology in the IoT field, especially in the need to deal with large-scale data and require efficient processing scenarios, and offer a vital reference for the research and practice in related fields.Copyright: © 2024 Xiaowen Ma. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *