|

StoneNet: An Efficient Lightweight Model Based on Depthwise Separable Convolutions for Kidney Stone Detection from CT Images.

Researchers

Journal

Modalities

Models

Abstract

Kidney stone disease is one of the most common and serious health problems in much of the world, leading to many hospitalizations with severe pain. Detecting small stones is difficult and time-consuming, so an early diagnosis of kidney disease is needed to prevent the loss of kidney failure. Recent advances in artificial intelligence (AI) found to be very successful in the diagnosis of various diseases in the biomedical field. However, existing models using deep networks have several problems, such as high computational cost, long training time, and huge parameters. Providing a low-cost solution for diagnosing kidney stones in a medical decision support system is of paramount importance. Therefore, in this study, we propose “StoneNet”, a lightweight and high-performance model for the detection of kidney stones based on MobileNet using depthwise separable convolution. The proposed model includes a combination of global average pooling (GAP), batch normalization, dropout layer, and dense layers. Our study shows that using GAP instead of flattening layers greatly improves the robustness of the model by significantly reducing the parameters. The developed model is benchmarked against four pre-trained models as well as the state-of-the-art heavy model. The results show that the proposed model can achieve the highest accuracy of 97.98%, and only requires training and testing time of 996.88 s and 14.62 s. Several parameters, such as different batch sizes and optimizers, were considered to validate the proposed model. The proposed model is computationally faster and provides optimal performance than other considered models. Experiments on a large kidney dataset of 1799 CT images show that StoneNet has superior performance in terms of higher accuracy and lower complexity. The proposed model can assist the radiologist in faster diagnosis of kidney stones and has great potential for deployment in real-time applications.© 2023. International Association of Scientists in the Interdisciplinary Areas.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *