| |

Speckle denoising based on deep learning via a conditional generative adversarial network in digital holographic interferometry.

Researchers

Journal

Modalities

Models

Abstract

Speckle denoising can improve digital holographic interferometry phase measurements but may affect experimental accuracy. A deep-learning-based speckle denoising algorithm is developed using a conditional generative adversarial network. Two subnetworks, namely discriminator and generator networks, which refer to the U-Net and DenseNet layer structures are used to supervise network learning quality and denoising. Datasets obtained from speckle simulations are shown to provide improved noise feature extraction. The loss function is designed by considering the peak signal-to-noise ratio parameters to improve efficiency and accuracy. The proposed method thus shows better performance than other denoising algorithms for processing experimental strain data from digital holography.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *