|

Simultaneous vessel segmentation and unenhanced prediction using self-supervised dual-task learning in 3D CTA (SVSUP).

Researchers

Journal

Modalities

Models

Abstract

The vessel segmentation in CT angiography (CTA) provides an important basis for automatic diagnosis and hemodynamics analysis. Virtual unenhanced (VU) CT images obtained by dual-energy CT can assist clinical diagnosis and reduce radiation dose by obviating true unenhanced imaging (UECT). However, accurate segmentation of all vessels in the head-neck CTA (HNCTA) remains a challenge, and VU images are currently not available from conventional single-energy CT imaging.In this paper, we proposed a self-supervised dual-task deep learning strategy to fully automatically segment all vessels and predict unenhanced CT images from single-energy HNCTA based on a developed iterative residual-sharing scheme. The underlying idea was to use the correlation between the two tasks to improve task performance while avoiding manual annotation for model training.The feasibility of the strategy was verified using the data of 24 patients. For vessel segmentation task, the proposed model achieves a significantly higher average Dice coefficient (84.83%, P-values 10-3 in paired t-test) than the state-of-the-art segmentation model, vanilla VNet (78.94%), and several popular 3D vessel segmentation models, including Hessian-matrix based filter (62.59%), optically-oriented flux (66.33%), spherical flux model (66.91%), and deep vessel net (66.47%). For the unenhanced prediction task, the average ROI-based error compared to the UECT in the artery tissue is 6.1±4.5 HU, similar to previously reported 6.4±5.1 HU for VU reconstruction.Results show that the proposed dual-task framework can effectively improve the accuracy of vessel segmentation in HNCTA, and it is feasible to predict the unenhanced image from single-energy CTA, providing a potential new approach for radiation dose saving. Moreover, to our best knowledge, this is the first reported annotation-free deep learning-based full-image vessel segmentation for HNCTA.Copyright © 2022 Elsevier B.V. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *