|

Self-attention-driven retrieval of chest CT images for COVID-19 assessment.

Researchers

Journal

Modalities

Models

Abstract

Numerous methods have been developed for computer-aided diagnosis (CAD) of coronavirus disease-19 (COVID-19), based on chest computed tomography (CT) images. The majority of these methods are based on deep neural networks and often act as “black boxes” that cannot easily gain the trust of medical community, whereas their result is uniformly influenced by all image regions. This work introduces a novel, self-attention-driven method for content-based image retrieval (CBIR) of chest CT images. The proposed method analyzes a query CT image and returns a classification result, as well as a list of classified images, ranked according to similarity with the query. Each CT image is accompanied by a heatmap, which is derived by gradient-weighted class activation mapping (Grad-CAM) and represents the contribution of lung tissue and lesions to COVID-19 pathology. Beyond visualization, Grad-CAM weights are employed in a self-attention mechanism, in order to strengthen the influence of the most COVID-19-related image regions on the retrieval result. Experiments on two publicly available datasets demonstrate that the binary classification accuracy obtained by means of DenseNet-201 is 81.3% and 96.4%, for COVID-CT and SARS-CoV-2 datasets, respectively, with a false negative rate which is less than 3% in both datasets. In addition, the Grad-CAM-guided CBIR framework slightly outperforms the plain CBIR in most cases, with respect to nearest neighbour (NN) and first four (FF). The proposed method could serve as a computational tool for a more transparent decision-making process that could be trusted by the medical community. In addition, the employed self-attention mechanism increases the obtained retrieval performance.Creative Commons Attribution license.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *