|

Quantifying deep grey matter atrophy using automated segmentation approaches: A systematic review of structural MRI studies.

Researchers

Journal

Modalities

Models

Abstract

The deep grey matter (DGM) nuclei of the brain play a crucial role in learning, behaviour, cognition, movement and memory. Although automated segmentation strategies can provide insight into the impact of multiple neurological conditions affecting these structures, such as Multiple Sclerosis (MS), Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD) and Cerebral Palsy (CP), there are a number of technical challenges limiting an accurate automated segmentation of the DGM. Namely, the insufficient contrast of T1 sequences to completely identify the boundaries of these structures, as well as the presence of iso-intense white matter lesions or extensive tissue loss caused by brain injury. Therefore in this systematic review, 269 eligible studies were analysed and compared to determine the optimal approaches for addressing these technical challenges. The automated approaches used among the reviewed studies fall into three broad categories, atlas-based approaches focusing on the accurate alignment of atlas priors, algorithmic approaches which utilise intensity information to a greater extent, and learning-based approaches that require an annotated training set. Studies that utilise freely available software packages such as FIRST, FreeSurfer and LesionTOADS were also eligible, and their performance compared. Overall, deep learning approaches achieved the best overall performance, however these strategies are currently hampered by the lack of large-scale annotated data. Improving model generalisability to new datasets could be achieved in future studies with data augmentation and transfer learning. Multi-atlas approaches provided the second-best performance overall, and may be utilised to construct a “silver standard” annotated training set for deep learning. To address the technical challenges, providing robustness to injury can be improved by using multiple channels, highly elastic diffeomorphic transformations such as LDDMM, and by following atlas-based approaches with an intensity driven refinement of the segmentation, which has been done with the Expectation Maximisation (EM) and level sets methods. Accounting for potential lesions should be achieved with a separate lesion segmentation approach, as in LesionTOADS. Finally, to address the issue of limited contrast, R2*, T2* and QSM sequences could be used to better highlight the DGM due to its higher iron content. Future studies could look to additionally acquire these sequences by retaining the phase information from standard structural scans, or alternatively acquiring these sequences for only a training set, allowing models to learn the “improved” segmentation from T1-sequences alone.
Crown Copyright © 2019. Published by Elsevier Inc. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *