|

PVsiRNAPred: Prediction of plant exclusive virus-derived small interfering RNAs by deep convolutional neural network.

Researchers

Journal

Modalities

Models

Abstract

Plant exclusive virus-derived small interfering RNAs (vsiRNAs) regulate various biological processes, especially important in antiviral immunity. The identification of plant vsiRNAs is important for understanding the biogenesis and function mechanisms of vsiRNAs and further developing anti-viral plants. In this study, we extracted plant vsiRNA sequences from the PVsiRNAdb database. We then utilized deep convolutional neural network (CNN) to develop a deep learning algorithm for predicting plant vsiRNAs based on vsiRNA sequence composition, known as PVsiRNAPred. The key part of PVsiRNAPred is the CNN module, which automatically learns hierarchical representations of vsiRNA sequences related to vsiRNA profiles in plants. When evaluated using an independent testing dataset, the accuracy of the model was 65.70%, which was higher than those of five conventional machine learning method-based classifiers. In addition, PVsiRNAPred obtained a sensitivity of 67.11%, specificity of 64.26% and Matthews correlation coefficient (MCC) of 0.31, and the area under the receiver operating characteristic (ROC) curve (AUC) of PVsiRNAPred was 0.71 in the independent test. The permutation test with 1000 shuffles resulted in a
p
value

of

<
0
.
0
0
1
. The above results reveal that PVsiRNAPred has favorable generalization capabilities. We hope PVsiRNAPred, the first bioinformatics algorithm for predicting plant vsiRNAs, will allow efficient discovery of new vsiRNAs.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *