|

Providing clinical context to the spatio-temporal analysis of 4D CT perfusion to predict acute ischemic stroke lesion outcomes.

Researchers

Journal

Modalities

Models

Abstract

Acute ischemic stroke is a leading cause of mortality and morbidity worldwide. Timely identification of the extent of a stroke is crucial for effective treatment, whereas spatio-temporal (4D) Computed Tomography Perfusion (CTP) imaging is playing a critical role in this process. Recently, the first deep learning-based methods that leverage the full spatio-temporal nature of perfusion imaging for predicting stroke lesion outcomes have been proposed. However, clinical information is typically not integrated into the learning process, which may be helpful to improve the tissue outcome prediction given the known influence of various factors (i.e., physiological, demographic, and treatment factors) on lesion growth. Cross-attention, a multimodal fusion strategy, has been successfully used to combine information from multiple sources, but it has yet to be applied to stroke lesion outcome prediction. Therefore, this work aimed to develop and evaluate a novel multimodal and spatio-temporal deep learning model that utilizes cross-attention to combine information from 4D CTP and clinical metadata simultaneously to predict stroke lesion outcomes. The proposed model was evaluated using a dataset of 70 acute ischemic stroke patients, demonstrating significantly improved volume estimates (mean error = 19 ml) compared to a baseline unimodal approach (mean error = 35 ml, p< 0.05). The proposed model allows generating attention maps and counterfactual outcome scenarios to investigate the relevance of clinical variables in predicting stroke lesion outcomes at a patient level, helping to provide a better understanding of the model’s decision-making process.Copyright © 2023. Published by Elsevier Inc.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *