| |

Predicting Blood Pressures for Pregnant Women by PPG and Personalized Deep Learning.

Researchers

Journal

Modalities

Models

Abstract

Blood pressure (BP) is predicted by this effort based on photoplethysmography (PPG) data to provide effective pre-warning of possible preeclampsia of pregnant women. Towards frequent BP measurement, a PPG sensor device is utilized in this study as a solution to offer continuous, cuffless blood pressure monitoring frequently for pregnant women. PPG data were collected using a flexible sensor patch from the wrist arteries of 194 subjects, which included 154 normal individuals and 40 pregnant women. Deep-learning models in 3 stages were built and trained to predict BP. The first stage involves developing a baseline deep-learning BP model using a dataset from common subjects. In the 2nd stage, this model was fine-tuned with data from pregnant women, using a 1-Dimensional Convolutional Neural Network (1D-CNN) with Convolutional Block Attention Module (CBAMs), followed by bi-directional Gated Recurrent Units (GRUs) layers and attention layers. The fine-tuned model results in a mean error (ME) of -1.40 ± 7.15 (standard deviation, SD) for systolic blood pressure (SBP) and -0.44 (ME) ± 5.06 (SD) for diastolic blood pressure (DBP). At the final stage is the personalization for individual pregnant women using transfer learning again, enhancing further the model accuracy to -0.17 (ME) ± 1.45 (SD) for SBP and 0.27 (ME) ± 0.64 (SD) for DBP showing a promising solution for continuous, non-invasive BP monitoring in precision by the proposed 3-stage of modeling, fine-tuning and personalization.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *