Pneumonia Detection in Chest X-Ray Dose-Equivalent CT: Impact of Dose Reduction on Detectability by Artificial Intelligence.

Researchers

Journal

Modalities

Models

Abstract

There has been a significant increase of immunocompromised patients in recent years due to new treatment modalities for previously fatal diseases. This comes at the cost of an elevated risk for infectious diseases, most notably pathogens affecting the respiratory tract. Because early diagnosis and treatment of pneumonia can help reducing morbidity and mortality, we assessed the performance of a deep neural network in the detection of pulmonary infection in chest X-ray dose-equivalent computed tomography (CT).
The 100 patients included in this retrospective study were referred to our department for suspicion of pulmonary infection and/or follow-up of known pulmonary nodules. Every patient was scanned with a standard dose (1.43 ± 0.54 mSv) and a 20 times dose-reduced (0.07 ± 0.03 mSv) CT protocol. We trained a deep neural network to perform binary classification (pulmonary consolidation present or not) and assessed diagnostic performance on both standard dose and reduced dose CT images.
The areas under the curve of the deep learning algorithm for the standard dose CT was 0.923 (confidence interval [CI] 95%: 0.905-0.941) and significantly higher than the areas under the curve (0.881, CI 95%: 0.859-0.903) of the reduced dose CT (p = 0.001). Sensitivity and specificity of the standard dose CT was 82.9% and 93.8%, and of the reduced dose CT 71.0% and 93.3%.
Pneumonia detection with X-ray dose-equivalent CT using artificial intelligence is feasible and may contribute to a more robust and reproducible diagnostic performance. Dose reduction lowered the performance of the deep neural network, which calls for optimization and adaption of CT protocols when using AI algorithms at reduced doses.
Copyright © 2020 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *