|

NecroGlobalGCN: Integrating micronecrosis information in HCC prognosis prediction via graph convolutional neural networks.

Researchers

Journal

Modalities

Models

Abstract

Hepatocellular carcinoma (HCC) ranks fourth in cancer mortality, underscoring the importance of accurate prognostic predictions to improve postoperative survival rates in patients. Although micronecrosis has been shown to have high prognostic value in HCC, its application in clinical prognosis prediction requires specialized knowledge and complex calculations, which poses challenges for clinicians. It would be of interest to develop a model to help clinicians make full use of micronecrosis to assess patient survival.To address these challenges, we propose a HCC prognosis prediction model that integrates pathological micronecrosis information through Graph Convolutional Neural Networks (GCN). This approach enables GCN to utilize micronecrosis, which has been shown to be highly correlated with prognosis, thereby significantly enhancing prognostic stratification quality. We developed our model using 3622 slides from 752 patients with primary HCC from the FAH-ZJUMS dataset and conducted internal and external validations on the FAH-ZJUMS and TCGA-LIHC datasets, respectively.Our method outperformed the baseline by 8.18% in internal validation and 9.02% in external validations. Overall, this paper presents a deep learning research paradigm that integrates HCC micronecrosis, enhancing both the accuracy and interpretability of prognostic predictions, with potential applicability to other pathological prognostic markers.This study proposes a composite GCN prognostic model that integrates information on HCC micronecrosis, collecting large dataset of HCC histopathological images. This approach could assist clinicians in analyzing HCC patient survival and precisely locating and visualizing necrotic tissues that affect prognosis. Following the research paradigm outlined in this paper, other prognostic biomarker integration models with GCN could be developed, significantly enhancing the predictive performance and interpretability of prognostic model.Copyright © 2024. Published by Elsevier B.V.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *