|

Multi-kernel driven 3D convolutional neural network for automated detection of lung nodules in chest CT scans.

Researchers

Journal

Modalities

Models

Abstract

The accurate position detection of lung nodules is crucial in early chest computed tomography (CT)-based lung cancer screening, which helps to improve the survival rate of patients. Deep learning methodologies have shown impressive feature extraction ability in the CT image analysis task, but it is still a challenge to develop a robust nodule detection model due to the salient morphological heterogeneity of nodules and complex surrounding environment. In this study, a multi-kernel driven 3D convolutional neural network (MK-3DCNN) is proposed for computerized nodule detection in CT scans. In the MK-3DCNN, a residual learning-based encoder-decoder architecture is introduced to employ the multi-layer features of the deep model. Considering the various nodule sizes and shapes, a multi-kernel joint learning block is developed to capture 3D multi-scale spatial information of nodule CT images, and this is conducive to improving nodule detection performance. Furthermore, a multi-mode mixed pooling strategy is designed to replace the conventional single-mode pooling manner, and it reasonably integrates the max pooling, average pooling, and center cropping pooling operations to obtain more comprehensive nodule descriptions from complicated CT images. Experimental results on the public dataset LUNA16 illustrate that the proposed MK-3DCNN method achieves more competitive nodule detection performance compared to some state-of-the-art algorithms. The results on our constructed clinical dataset CQUCH-LND indicate that the MK-3DCNN has a good prospect in clinical practice.© 2024 Optica Publishing Group.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *