Model-based Explainable Deep Learning for Light-field Microscopy Imaging.
Researchers
Journal
Modalities
Models
Abstract
In modern neuroscience, observing the dynamics of large populations of neurons is a critical step of understanding how networks of neurons process information. Light-field microscopy (LFM) has emerged as a type of scanless, high-speed, three-dimensional (3D) imaging tool, particularly attractive for this purpose. Imaging neuronal activity using LFM calls for the development of novel computational approaches that fully exploit domain knowledge embedded in physics and optics models, as well as enabling high interpretability and transparency. To this end, we propose a model-based explainable deep learning approach for LFM. Different from purely data-driven methods, the proposed approach integrates wave-optics theory, sparse representation and non-linear optimization with the artificial neural network. In particular, the architecture of the proposed neural network is designed following precise signal and optimization models. Moreover, the network’s parameters are learned from a training dataset using a novel training strategy that integrates layer-wise training with tailored knowledge distillation. Such design allows the network to take advantage of domain knowledge and learned new features. It combines the benefit of both model-based and learning-based methods, thereby contributing to superior interpretability, transparency and performance. By evaluating on both structural and functional LFM data obtained from scattering mammalian brain tissues, we demonstrate the capabilities of the proposed approach to achieve fast, robust 3D localization of neuron sources and accurate neural activity identification.